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Abstract

Traditional empirical interatomic potentials exhibit limited accuracy in describing the high-temperature struc-
tural response of silicon carbide (SiC), while first-principles simulations remain computationally expensive.
In this work, a deep neural network interatomic potential for SiC was constructed based on the density func-
tional theory (DFT) datasets. An attention-enhanced descriptor was introduced to improve the representa-
tion of bond-length and bond-angle correlations. A concurrent learning workflow based on the deep poten-
tial generator (DP-GEN) was employed to iteratively refine sampling of defect configurations and improve
force prediction accuracy. The final deep potential model demonstrates close agreement with DFT, achiev-
ing root-mean-square errors of 0.42 meVjatom for energy and 49 meV/A for force. Molecular dynamics (MD)
simulations using the developed potential significantly outperform DFT in efficiency, reaching 34 steps per sec-
ond at 1300 K. Structural evaluation shows that the model reproduces radial distribution characteristics and
suppresses high-frequency atomic fluctuations at elevated temperatures. Nano-indentation simulations further
reveal temperature-accelerated bond breaking, local structural disorder and expansion of subsurface damage
regions. The proposed potential enables reliable atomistic modelling of SiC under severe thermomechanical
conditions, providing support for understanding high-temperature damage evolution and extending machine-
learning-based simulation of complex processing environments.
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I. Introduction bide exhibits strong brittleness and a complex crystal
structure. Microcrack initiation and propagation are eas-
ily observed under extreme conditions, such as high-
temperature and high-speed grinding. The service life
and stability of the material are severely affected [§—10].
Therefore, the damage evolution mechanism at high
temperature is investigated at the atomic scale. Its study
is regarded as having significant theoretical value and
engineering significance for material performance opti-
mization and failure prediction.

Molecular dynamics (MD) is regarded as an impor-
tant method for studying atomic behaviour in materials.
Microscopic structural evolution during grinding is ef-
fectively captured. The underlying damage mechanisms
are also revealed with its assistance. The accuracy of
MD simulation is determined by the modelling of in-

Silicon carbide (SiC) serves as a third-generation
wide-bandgap semiconductor material [1,2]. It exhibits
high hardness, high thermal conductivity, excellent
high-temperature resistance and strong irradiation tol-
erance. Its applications span aerospace, nuclear energy,
optoelectronics and advanced manufacturing [3,4]. SiC-
based composites are regarded as ideal materials for
high-performance structural and friction components.
They are endowed with high strength, high modulus
and good thermal stability [5—7]. However, silicon car-
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teratomic interaction potentials. Although atomic inter-
actions are described with high precision by ab initio
molecular dynamics (AIMD) based on the density func-
tional theory (DFT), an extremely high computational
cost is encountered. Large-scale and long-time simula-
tions are therefore difficult to perform [11]. Traditional
empirical potentials, such as Tersoff and REBO, are
limited in accuracy when describing many-body inter-
actions, interfacial behaviour and non-equilibrium pro-
cesses at high temperature. They cannot satisfy the sim-
ulation requirements for complex friction and wear pro-
cesses. In recent years, deep learning potentials (DP)
trained with first-principles data are regarded as a new
generation of interatomic potentials. In this way, accu-
racy and computational efficiency are balanced [12—14]

To address the insufficient prediction capability of ex-
isting potentials for SiC damage evolution under high-
temperature grinding, a silicon carbide dataset is con-
structed in this work based on the first-principles cal-
culations. An attention mechanism is introduced to op-
timize the structure of atomic environment descrip-
tors. A high-precision deep learning potential model for
high-temperature grinding is built using the Deep Po-
tential Molecular Dynamics framework (DeepMD-kit)
[15]. The model is gradually improved in generaliza-
tion and stability under different thermodynamic condi-
tions through adaptive sampling and iterative optimiza-
tion using DP-GEN [16]. A deep potential model suit-
able for high-temperature SiC is ultimately constructed.
Training results show that the root mean square errors
(RMSE) of atomic energy and interatomic force pre-
dictions are close to DFT accuracy. Computational ef-
ficiency is significantly enhanced. Excellent scalability
and practicality are achieved.

Based on the constructed deep-learning potential,
atomic-scale molecular dynamics simulations are con-
ducted under high-temperature grinding conditions. The
microscopic mechanisms of grinding load evolution,
damage region expansion, structural relaxation and frac-
ture behaviour are systematically analysed. High tem-
perature is found to accelerate atomic slip, bond break-
ing and local structural disorder. Significant expansion
of damage regions is observed. The essential effect of
temperature increase on subsurface damage evolution in
silicon carbide is revealed. This work provides theoret-
ical support for understanding the failure mechanisms
of SiC under extreme processing conditions. It also of-
fers guidance for developing machine learning poten-
tials suitable for complex multi-field coupled systems.

II. SiC structure sampling and dataset design

2.1. Structure sampling strategy and DFT computa-
tion workflow

During the training of deep learning potentials, the
accuracy of the potential depends on the rationality and
diversity of the dataset. The rationality of the initial sil-
icon carbide configuration is ensured before the con-
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struction of the dataset. The geometric configuration of
the initial structure is optimized to obtain the accurate
spatial positions of silicon carbide atoms. The detailed
process of reconfiguring the atomic spatial positions is
shown in Fig. 1.

As shown in Fig. la, the construction process of
the initial structural positions of silicon carbide atoms
is presented. The SiC unit cell contains 18 atoms. A
2 X 2 x 2 supercell expansion is performed in the
UNIT CELL module of the VESTA [17] software. Af-
ter expansion, the crystal size is x = 8.70799 A, y =
8.70799 A, z = 8.70799 A. The total number of atoms
in the system reaches 95. A tetrahedral structure is ran-
domly selected in the crystal structure. The bond angle
Oc_si_c 1s measured as 108.231°. The standard bond an-
gle of 3C-SiC was reported as O¢c_si—c = 109.47° (ideal
tetrahedral angle) by Rino et al. [18]. A significant de-
viation is observed between the current value and the
experimental value. The deviation is caused by atomic
overlap and spatial site distortion after supercell expan-
sion. Geometric optimization is required before AIMD
simulation. The GEO_OPT module of CP2K software
is used to optimize the supercell structure. The main al-
gorithms include BFGS, LBFGS and CG. The LBFGS
algorithm is memory efficient and is used for very large
systems. The CG algorithm is stable for sparse systems
but is slow. The BFGS algorithm is suitable for medium
systems and converges fast. Therefore, the BFGS al-
gorithm is selected to optimize the initial SiC crys-
tal structure (see Fig. 1b). The convergence criteria
are defined. The maximum displacement (MAX_DR)
is required to be less than 0.003 bohr (» 0.0016 A).
The maximum force (MAX_FORCE) is required to
be less than 0.00045 a.u./bohr (= 0.00023 eV/A). The
root mean square displacement (RMS_DR) is required
to be less than 0.0015. The root mean square force
(RMS_FORCE) is required to be less than 0.0003. All
four criteria must be satisfied. Otherwise, the iterations
are continued until convergence. A complete crystal
structure model is obtained after convergence (see Fig.
Ic). The bond length distribution of the optimized crys-
tal model is analysed. The average C-Si bond length
is measured as 1.885 A. The value is highly consistent
with the experimental value of 1.888 A reported by Is-
lam [19]. The C-Si—C bond angle and the Si—C-Si bond
angle of 3C-SiC are the same. The average bond an-
gle Oc_si—c is measured as 109.831° after optimization.
The value is compared with the experimental value of
109.47° reported by Bekaroglu et al. [20]. The error is
within the acceptable range. The reconstructed atomic
spatial structure is proved to be reasonable. Now the
structure can be used as the training dataset for the deep
learning potential.

The structural construction stage yields two finalized
outputs: i) the optimized periodic SiC crystal structure
exported as a standard CIF file containing full lattice
and symmetry information and ii) the converged atomic
coordinate matrix recorded after geometry relaxation.
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Figure 1. Construction process of the SiC dataset

The CIF file maintains crystallographic periodicity for
subsequent structural referencing, whereas the coordi-
nate matrix serves as the explicit numerical basis for de-
scriptor encoding in Deep Potential fitting and DP-GEN
adaptive sampling in the next stage.

III. Attention mechanism descriptors

While a sufficiently large dataset is obtained, a
reasonable neural network architecture is constructed
based on the deep potential to fit the interatomic poten-
tial accurately. The fitting process is performed to en-
sure high precision of the potential. The deep learning
potential fitted with the Se_e2_a descriptor alone cap-
tures bond angle information insufficiently. Large er-
rors are observed in predicting the physical structure
of 3C-SiC. The deep learning potential fitted with the
Se_e2 descriptor alone captures bond length informa-
tion insufficiently. The network structure is too com-
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plex. Computational efficiency is significantly reduced.
Therefore, attention mechanism descriptors are intro-
duced as shown in Fig. 2.

Figure 2a shows that in covalent materials such as
silicon carbide, structural distortion occurs easily if the
deep learning potential lacks explicit control of local ge-
ometric structures and physical consistency constraints.
Consequently, the physical realism and predictive reli-
ability in downstream molecular dynamics simulations
could be affected. To construct a high-precision and
highly generalizable potential model, effective mech-
anisms for describing and controlling local geometric
information, such as bond lengths and bond angles,
are systematically introduced at multiple levels, includ-
ing model architecture, training strategy, data genera-
tion, and physical priors. In Fig. 2b, distances between
atom pairs (bond lengths) are described in SE_E2_A us-
ing symmetry functions similar to the Behler-Parrinello
type or radial basis functions in message passing neural
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Figure 2. The neural network workflow of the SiC deep learning potential

networks. These functions are usually expressed in the
following form:

GR =

! Z e—’l(rij—Rs)zfc(rl_j)

J
where r;; is the distance between atom i and its neigh-
bouring atom j. The cut-off function f. is used to limit
the interaction range. n and R; control the centre and
width of the radial distribution. This descriptor is sen-
sitive to changes in interatomic distances. The poten-
tial energy variation caused by local bond stretching is
effectively captured. SE_E2_A mainly introduces two-
body radial descriptors. They only reflect the distance
distribution between atom pairs. Bond angles in three-
atom configurations cannot be represented. Therefore,
bond angle distortion occurs easily. In SE_E2, angu-
lar descriptors are represented by angular features ex-
panded with spherical harmonics. They show excel-
lent directional sensitivity. However, radial information,
such as bond lengths or distances, are not represented
sufficiently or independently. The atomic environment
in SE_E2 is encoded through spherical harmonic expan-
sion as follows:

&)

399

pilr,0,9) = > F(ri)) - Yin(6yj, 1) @)
J

where Y}, represents the spherical harmonics and en-
codes directional angle information. f(r;;) represents
the distance function, which usually uses radial ba-
sis functions such as Bessel or Gaussian. The spheri-
cal harmonics Y;,(0, ¢) are independent of distance and
sensitive only to angles. If the radial function part is
simplified during descriptor construction, the distinc-
tion of different bond length configurations in the high-
dimensional embedding space is poor. In Fig. 2¢, bond
lengths and bond angles are included as descriptors in
the self-attention mechanism. This approach allows the
attention mechanism to identify and weight local ge-
ometric information. The model becomes more sensi-
tive to changes in local configurations, including bond
lengths and bond angles, and the physical modelling
ability is enhanced. The input is provided as a feature
matrix of the atomic structure:

[X € RNXDX] 3)
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The bond length between atoms i and j is defined as
rij. The bond angle formed by atoms i-j-k is defined
as 6;jx. G;; and r;; are encoded as structural descriptors
0ijx. In the first step, queries, keys, values, Q = XW,,
K = XWg and V = XWy are generated as in the stan-
dard self-attention. W,, Wi and Wy are trainable weight
matrices. In the second step, structure-aware bias terms
are constructed. Bond lengths and bond angles are em-
bedded to introduce geometric bias information B;;. The
geometric bias can be defined as follows:

Bij = @.(rij) + Do(6;jx) 4

where @,(r;;) represents the bond length embedding
function, such as the radial basis function expansion.
Dy(6;jx) represents the bond angle embedding function,
such as angle encoding or many-body tensor. In the
third step, structure-aware attention scores are calcu-
lated. The attention score calculation formula is mod-
ified to include structural information:

— QIK]
A,’j =
VDg
B;; controls whether the attention focuses on distant

atoms or non-ideal angles. In the fourth step, attention
weights are normalized using the softmax function:

+ B;; 5)

exp(A;))
> exp(Ai)

The sum of attention weights from each node to
its neighbours is ensured to be 1. In the fifth step,
structure-weighted aggregation of value information is
performed:

Ajj= soﬁmaxj(ﬁij) = 6)

H = ZAUV, (7)
J

The output matrix H € RV*P" is defined as the structure-
aware representation of each atom.

Through above described process, simultaneous en-
coding of bond-length and bond-angle dependencies
while preserving local symmetry information were en-
abled. All descriptor operators (SE_E2, SE_E2_A and
attention-augmented variants) are implemented through
the native descriptor and model-definition modules in
the DeePMD-kit framework, which internally handles
descriptor embedding, environment mapping and neu-
ral network fitting without external coding intervention.

IV. Fitting interatomic potentials of SiC

4.1. Theoretical foundation of deep potential

The core idea of the deep potential method is to use
atomic-level neural network potentials. Complex many-
body interactions are decomposed into a sum of energy
contributions from individual atoms. For a system con-
taining N atoms, the total energy is expressed as the sum
of atomic energies:
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N
Ea = ) E; @®)
i=1

The energy of a single atom, E;, is determined uniquely
by its surrounding local atomic environment:

Ei = f(s) 9

The construction of the local environment is required
to remain physically invariant under translation and ro-
tation. To achieve this, an environment matrix R; is de-
fined for each atom i:

Ry ={s(rjp) - rjilj #i,rji <rc} (10)
where s(rj;) is a smooth weighting function. It is used to
describe the contribution weight of neighbouring atom

Jj to the central atom i:

7T'I"ji

s(rj) = % [cos( ) + l] Jrji < Fe (11)

rC
The function smoothly decays to zero near the cut-off
radius r.. This ensures that the potential is differen-
tiable over the entire domain. However, R; only pos-
sesses translational invariance. To achieve symmetry
under translation, rotation, and permutation of identical
atoms, R; is projected into the chemical descriptor space
through a feature mapping function:

Si = D(R;) (12)

Under different descriptor construction methods, infor-
mation is extracted from various components of R; and
used as input to the neural network. The potential effi-
ciently captures the non-linear relationship between the
local environment and atomic energy while preserving
physical symmetries.

4.2. Execution workflow of DP-GEN

After fitting the deep potential for the SiC system,
the initial deep learning potential shows significant de-
viations in energy and force predictions for some lo-
cal structures during molecular dynamics simulations.
It cannot meet the requirements of high-precision mod-
elling. To improve the applicability and generalization
of the potential, the DP-GEN framework, based on an
active learning strategy, is introduced. Weak regions
in the potential energy model are continuously discov-
ered and corrected through iterative sampling and high-
precision labelling. Figure 3 shows a complete DP-GEN
cycle in the SiC system, illustrating the identification of
potential defects and the optimization of the deep poten-
tial.

In the initial dataset shown in Fig. 3b, the initial
configurations are generated by calling AIMD calcu-
lations in the CP2K software. During the simulation,
bond lengths and angles between C atoms and Si atoms
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Figure 3. Iterative process of DP-

change continuously until the energy reaches equilib-
rium. These configurations with different bond lengths
and angles are used to construct the training dataset
for the deep learning potential. However, some in-
valid configurations exist in the initial dataset. They are
corrected, and the DP-GEN generator is used to ad-
dress this issue. DP-GEN is a parallel learning process.
Each iteration includes three main steps: training, explo-
ration, and labelling. The training dataset obtained from
DFT calculations is first initialized with different poten-
tials. Relevant functions are defined using the DeePMD-
kit simultaneous-training parameters. Next, in the ex-

GEN for optimizing the SiC potential

ploration stage, the configuration space is expanded.
MD simulations are performed in LAMMPS using the
potentials obtained from training and the specified ini-
tial structures. The resulting configurations are screened
based on the standard deviation of atomic forces. Fi-
nally, in the labelling step, the selected configurations
receive DFT single-point calculations to obtain forces
and energies. These new configurations are added to the
training dataset for a new round of training. The iter-
ative cycle is shown in Fig. 3a. In the training step, a
deep neural network (DNN) maps the local atomic en-
vironment to the atomic energy E;, and the total sys-
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tem energy E is obtained by summation. The DNN ef-
fectively captures the dependence of atomic energy on
local atomic coordinates. Next is the exploration step,
which consists of an efficient sampler and an error in-
dicator. The sampler aims to explore the configuration
space effectively and uses the DP model to evaluate the
potential and atomic forces. The maximum force devia-
tion index is defined as the maximum standard deviation
¢ of atomic forces F; predicted by the DP model:

& = max VI|IF; = (Fll? 13)

During training, the average of all deep potential
model predictions is used as the reference for model
output. At the beginning of training, a wide devia-
tion range can be set. The initial upper limit was
Onigh = 0.35eVA~! and the lower limit was o, =
0.15eV A~'. This range is dynamically adjusted ac-
cording to the model convergence to improve accuracy.
Configurations with maximum force deviation & within
Olow < & < Oig are defined as candidate configura-
tions. When the maximum force deviation of all sam-
pled configurations satisfies € < o7, the DP-GEN
task is terminated. If the maximum force deviation is
& > Opigh, the predicted forces deviate excessively; the
total system energy is too high, causing the configura-
tions to fail to converge in the first-principles calcula-
tions. These configurations are then defined as failed
configurations. The setting of oy, is determined by the
peak position of the maximum force deviation distribu-
tion curve. If the distribution peak is on the left of o7,
the lower limit is set reasonably. If the peak is on the
right or the distribution range is too wide, the upper and
lower thresholds need to be adjusted. Otherwise, it is
difficult to construct a high-precision potential energy
model.

4.3. Validation of model computational efficiency

In multiscale materials simulations, the choice of po-
tential directly affects the spatial and temporal scales
of the simulations. To balance computational speed and
physical accuracy, a deep learning-based deep poten-
tial (DP) is constructed for silicon carbide. Its perfor-
mance is systematically evaluated. The computational
speed and accuracy results are shown in Fig. 4.

To systematically evaluate the computational effi-
ciency of different potentials in molecular dynamics
simulations of the SiC system, the simulation perfor-
mance of DFT, classical Tersoftf potential, and deep
learning-based DeepMD potential are compared under
the same computational environment. MD simulations
are run for 100 steps at 1000 K with a time step of 1 fs.
The number of simulation steps completed per second is
measured for the three potentials. The results are shown
in Fig. 4. DFT, as an ab initio method, has extremely
high computational cost and completes only about 0.016
steps per second. The Tersoff potential achieves about
8700 steps per second due to its simple analytic form,
making it the fastest among the three. DeepMD achieves
about 34 steps per second while maintaining physical
accuracy. Compared with DFT, DeepMD is approxi-
mately three orders of magnitude faster on the same
CPU. Although slightly slower than Tersoff, the data-
driven mechanism of DeepMD provides better general-
ization and stronger physical adaptability.

Furthermore, to compare the structural description
capabilities of the three potentials, the radial distribution
function g(r) of SiC calculated by each method is shown
on the right side of the figure. The DFT curve is used
as the reference. The DeepMD prediction closely over-
laps with DFT, showing good agreement in the position
and intensity of the main peak. This indicates that it ac-
curately reproduces interatomic structural features. The
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Figure 4. Analysis of computational efficiency
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Tersoff potential shows obvious deviations in the first
nearest-neighbour distance and higher-order peaks, re-
flecting its limitations in describing short- and medium-
range atomic arrangements. Considering both computa-
tional efficiency and structural accuracy, the DeepMD
potential maintains high performance while achieving
near-DFT structural prediction accuracy. It provides a
feasible approach for a large-scale, high-precision sim-
ulations of SiC materials.

V. DFT and machine learning potentials

5.1. Comparison of energy and force prediction ac-
curacy across multiple models

The prediction accuracy of the constructed deep po-
tential (DP) model for silicon carbide on atomic en-
ergy and force at medium and high temperatures is sys-
tematically evaluated. Molecular dynamics relaxation
processes are performed at different temperatures. Five
temperatures were selected: 400, 600, 800, 1100 and
1300 K. From each temperature, a testing dataset with
200 time steps is sampled. The results are shown in
Fig. 5.

The upper part of Fig. 5 shows the model evaluation
at 600 K. The first panel (Fig. 5a) presents the compar-
ison between the per-atom energy predicted by the DP
model and the DFT reference. The data are distributed
along the ideal fitting line (y = x). No large systematic
deviation is observed. The enlarged view shows that the
energy errors are mainly concentrated within +0.002 eV,
and the distribution forms a narrow peak. High accu-
racy and stability of the model at low temperature are
demonstrated. The second panel (Fig. 5b) shows the
force prediction in three directions. The predicted val-
ues of F, F\ and F, match the DFT results well. The
error frequency distributions in all directions are sim-
ilar. The errors are mainly located within +0.01 eV/A.
Good isotropy of force prediction is demonstrated. Pan-
els, presented in Figs. Sc and 5d, show the energy er-
ror distributions and the variation of force RMSE at dif-
ferent temperatures. As the temperature increases from
400 to 1300 K, the error peaks of energy remain close
to zero. Slightly longer tails appear at higher tempera-
tures. The overall accuracy remains stable. The RMSE
of force increases slightly from about 0.004 eV/A at
400K to 0.00986eV/A at 1300 K. Strong robustness of
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Figure 5. Error distribution of energy and force predicted by the DP model
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force prediction under enhanced thermal disturbance is
demonstrated. In summary, the DP potential shows good
generalization accuracy below 1300K. The errors are
smallest in the range of 400-800 K. The potential is ap-
plicable to large-scale dynamic simulations of SiC at
medium and high temperatures.

5.2. Bond length and angle statistics and local dis-
tortion characteristics

Due to the differences of interaction description in
different potentials, the local distribution of atomic
forces and structural response show clear differences.
The statistical features of bond length and bond angle
are influenced. To further verify the accuracy of the
constructed deep potential (DP) in structural prediction,
DFT, classical empirical potential (Tersoff), and DP po-
tential are compared in the description of atomic struc-
ture in the SiC system. The fitting of bond length and
bond angle distributions is evaluated. The local struc-
tural distortion at the atomic scale is analysed. The com-
parison provides direct evidence for the ability of dif-
ferent models to reproduce microscopic structures. The
results are shown in Fig. 6.

In molecular dynamics simulations, the interactions
between atoms directly affect the structural evolution
of the system. The differences are mainly reflected in
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the statistical distributions of bond length and bond an-
gle. To evaluate the capability of different potentials in
describing atomic-scale structural features, the trajec-
tories of SiC generated by first-principles (DFT), deep
learning potential (DP), and classical empirical poten-
tial (Tersoff) are analysed statistically. As shown in Fig.
6a, the bond length distribution mainly lies in the range
of 1.8 to 2.1 A. Obvious differences are observed in the
predictions of different potentials. The bond length dis-
tribution predicted by the Tersoff potential shows a shift
of the main peak and a broader tail compared to DFT.
A systematic error in local structural constraints is indi-
cated. In contrast, the bond length distribution predicted
by the DP potential matches DFT closely in peak po-
sition, curve shape, and distribution width. The consis-
tency demonstrates that local interactions and bond en-
ergy surfaces are accurately described. The bond angle
distributions show that the average values of the three
methods concentrate between 108° and 112°. The Ter-
soff potential gives a shifted peak position, which in-
dicates its limitation in describing local angular ten-
sion. In contrast, the DP potential shows strong agree-
ment with DFT in peak position and distribution shape,
with only slight differences at the edges. This agree-
ment further confirms its accuracy in reproducing the
tension of Si—C bonds and the spatial arrangement of
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Figure 6. Comparison of bond length distribution, bond angle distribution and atomic trajectories of SiC structures
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atoms. To further reveal the difference in atomic dy-
namics, Fig. 6b presents the trajectory distributions of
typical Si and C atoms in the SiC system. Blue regions
represent C atoms, and red regions represent Si atoms.
The atomic trajectories predicted by the Tersoff poten-
tial are more dispersed, with a wide distribution range
and irregular patterns. This result indicates large fluc-
tuations of predicted atomic forces, which may cause
strong thermal disturbances in the system. In contrast,
the atomic trajectories predicted by the DP potential are
localized and symmetric, with narrower ranges of mo-
tion. A stable motion on the potential energy surface is
indicated. Especially for C atoms, the DP potential ac-
curately restricts high-frequency vibration while main-
taining thermal stability. This result shows that the mi-

Grinding direction V% pos

croscopic thermal motion of SiC at high temperatures is
reasonably described.

Overall, the DP potential shows much closer agree-
ment with DFT in trajectory evolution and atomic force
prediction compared with the Tersoff potential. A solid
basis for high-accuracy dynamical simulations is pro-
vided.

VI. Simulation of SiC behaviour

To investigate the effect of temperature on the sub-
surface damage evolution in silicon carbide, molec-
ular dynamics nanoindentation simulations were per-
formed using the deep learning potential (DeePMD).
The SiC molecular dynamics model was constructed in
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Figure 7. Atomic-scale damage evolution of silicon carbide during grinding under different temperature conditions
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LAMMPS. The main body of the model adopts a hexag-
onal SiC lattice, and a rigid spherical SiC indenter is
placed above it. The simulation system is divided into
three layers along the z-axis from bottom to top: i) a
0.5 nm boundary layer, ii) a 0.5 nm thermostat layer and
iii) a 4 nm Newton layer. The velocities of atoms in the
boundary layer are fixed to suppress boundary effects.
The thermostat layer is used to maintain a stable sys-
tem temperature and realize heat exchange. The Newton
layer serves as the main region for force response. Peri-
odic boundary conditions are applied to prevent edge
atom loss. The indenter is pressed into the specimen
along the z-axis at a fixed speed. The maximum indenta-
tion depth is set to 1.5 nm. The surface damage of both
components is analysed as shown in Fig. 7.

Figure 7a shows the model selection region for bond
breakage analysis during nanoscale grinding and the
corresponding grinding direction setup, which is used as
the basis for subsequent bond damage statistics. Figures
7b and 7c¢ show the volumetric strain distribution maps
of the SiC workpiece during nanoindentation when the
indenter penetration depth reaches 1.5nm at 300 and
1300K, respectively. The region outlined by the red
dashed line indicates the significant damage caused by
the indenter. At 300K (Fig. 7d), local atoms near the
indenter exhibit noticeable accumulation, and the dam-
age region is relatively concentrated while the structure
maintains a certain degree of order. At 1300K (Fig. 7e),
atomic activity is enhanced by thermal excitation, lead-
ing to a significant expansion of the damage region and
obvious local structural disruption and disorder. Under
high-temperature conditions, atoms slide and rearrange
more easily, and the integrity of the microstructure de-
creases significantly.

Figures 7b and 7c show the radial distribution func-
tion (RDF) comparisons of C—C, C-Si and Si-Si atomic
pairs under the same penetration depth (1.5 nm) at dif-
ferent temperatures. The first-neighbour peak positions
remain unchanged at approximately 2.0 A (C-Si), 2.5 A
(C—C) and 3.1 A (Si-Si). However, at 1300 K, the RDF
peak intensity of C—Si bonds decreases significantly, in-
dicating a strong reduction in local order between these
atoms. The RDF curves of C—C and Si—Si pairs also
show reduced peak heights and broadened peak shapes,
reflecting weakened interatomic interactions, enhanced
structural relaxation, and increased local bond break-
age and rearrangement. These results further confirm
that SiC workpieces are more prone to subsurface dam-
age and structural failure under high-temperature condi-
tions.

VII. Conclusions

This study constructs a structure-energy dataset for
SiC under high-temperature conditions based on the
first-principles calculations. An initial interatomic po-
tential is built using an improved DeepMD deep neu-
ral network framework. A multi-head attention mech-
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anism is introduced into the descriptor module to en-
hance the model’s perception of complex atomic in-
teractions. The DP-GEN adaptive iterative workflow is
designed to optimize sampled configurations using an
active learning strategy. The model’s capability to de-
scribe atomic interactions under high-temperature struc-
tural diversity and deformation fields is gradually im-
proved. Finally, a high-precision SiC deep learning po-
tential suitable for simulating high-temperature grind-
ing and indentation behaviour is obtained. Test results
show that the potential predicts atomic energies with an
RMSE of about 0.42 meV/atom and interatomic forces
with an RMSE of 49 meV/A. The computational effi-
ciency is increased by 5-6 orders of magnitude com-
pared to DFT, and good generalization performance is
maintained under high-temperature and high-strain con-
ditions. Analyses of radial distribution functions and lo-
cal strain distributions further confirm the accuracy of
the deep learning potential in capturing SiC structural
responses at different temperatures.

The attention-based SiC deep learning potential pro-
posed in this study effectively addresses the limita-
tions of traditional empirical potentials (such as Ter-
soff and MEAM) in modelling high-temperature, large-
deformation processes and overcomes the low com-
putational efficiency of DFT, which cannot support
nanosecond-scale dynamic simulations. Using this po-
tential, the grinding and nano-indentation processes of
SiC workpieces under high-temperature conditions with
a diamond tool are simulated. The results show that, as
the temperature increases, the atomic structure inside
the workpiece undergoes more severe reconstruction,
the surface accumulation and slip defects become more
pronounced, and thermal softening enhances both the
volumetric strain and local potential energy in the inden-
tation region. These findings provide theoretical support
for understanding the micro-damage behaviour and fail-
ure mechanisms of SiC at high temperatures and estab-
lish a potential basis for subsequent multi-scale simu-
lations using the DP potential, such as crack nucleation
and propagation or friction-induced damage evolution.
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